RadioElektryka@Poczta.Fm

Tel: +48 572-147-631

Gg: 10335254

SERWIS ELEKTRONICZNY - RADIOELEKTRYKA SOSNOWIEC POLSKA

NIEZALEŻNA DZIAŁALNOŚĆ BADAWCZO - NAUKOWA KLIKNIJ NA OPIS DOKUMENTU

WWW.RADIOELEKTRYKA.GLT.PL WWW.RADIOELEKTRYKA.PRV.PL

 

MSA1105TR1 17dB 500mW POBIERZ PDF MSA 1105  (201 KB)

 1uHz (Microhertz) = 1000nHz (Nanohertz) = 10-3mHz (Milihertz)
10uHz (Microhertz) = 10000nHz (Nanohertz) = 0,01mHz (Milihertz) (0,01uH = 10nH)

Zasięg nadajnika radiowego fm:
0.1W ~ 5W Transmitter FM: 100M ~ 1km
5W ~ 15W Transmitter FM : 1km ~ 3km
15W ~ 80W FM Transmitter FM: 3km ~ 10KM
80W ~ 500W Transmitter FM : 10KM ~ 30km
500W ~ 1000W Transmitter FM : 30km ~ 50km
1KW ~ 2KW Transmitter FM : 50KM ~ 100KM
2KW ~ 5KW Transmitter FM: 100KM ~ 150km
5KW ~ 10KW Transmitter FM : 150km ~ 200km

Prędkość fali elektro-magnetycznej w próżni: 300000 km/s (kilometr na sekundę)

Prędkość światła w próżni: 299792458 m/s (metr na sekundę)

Wzór: (300 x 106 m/s) / częstotliwość (Hz=1/s) (herc). Czytaj więcej...
Tranzystor mosfet. Czytaj dalej... Tranzystor bipolarny. Czytaj dalej...

Obieg w Figurze 1 może retransmitować dźwiękowy sygnał od ośrodka telefon do mownego diapazonu FM. Kiedy użytkownik rozmieszcza ośrodek telefoniczny spiker koło mikrofonu, on czy ona może przysłuchać się komórkowy telefoniczny dźwięk przez FM radio pojazdu. To może być wykorzystane, jak samochodowy dla wejścia bezpłatny dla rąk mikrofon z głośnikiem.IC1 - integralny kontrolowany przez napięcie oscillator IF (Vco) z dyferencjalną produkcją, która podtrzymuje 70mhz do 150mhz szeregu częstotliwości, który pokrywa całą grupę radia FM.
Liczba 1. Obwód FM nadajnika z mikrofonem do użytku jako telefon komórkowy umożliwiający pracę bez użycia rąk. Mikrofon bezprzewodowy 696 mW -10 dBm.
PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)
Dławik 0,33uHz (
Microhertz) = 3,3mHz (Milihertz), 0,27uHz (Microhertz) = 2,7mHz (Milihertz).
Induktor L1 ustala Vco center szereg nastrajania. Wybierzcie L1 takie, że efektywny induktywizm od szpilki Ind do GND przyprowadza output częstotliwość 100mhz.Ta częstotliwość koresponduje z centrum grupy FM. Induktor znaczenie 270nh pokrywa nastrajanie 97mhz do 128mhz szeregu. Potem, regulujcie rezystor Radjo dla nastrajania Vco do specyficznej częstotliwości stacji FM. Rezystory R2 i Radj skłaniają wewnętrzny varactor. Stacje FM znajdują się na przedziałach 0.2 MHz przerwy.
Liczba 2. Obwód FM nadajnika z bezpośrednim wkładem audio eliminuje szum tła z mikrofonu

.Transmitter CD 696 mW -10 dBm POBIERZ PDF MAX2605-2609 (318 KB)

  VCO potrafi ze zróżnicowanej mocy wyjściowej z do -8 dBm. Na mikrofon elektretowy wpływają z R1. AC-łączyć/połączyć mikrofon sygnał dźwiękowy moduluje Częstotliwość VCO przez zmienianie V TUNE. częstotliwość VCO wyjściowa będzie przestrzegać pojemności albo amplituda z mikrofonu. Sygnał dźwiękowy z około 20 mV RMS jest odpowiednie dla funkcjonalność. Nie górny-modulujcie Vco, czy resulting dźwięk od odbiorcy FM będzie wykrzywione. Górny-modulując Vco również osłabia carrier sygnał, wypuszczając potęgę na niewykorzystanym spektrum odbiorcą. W Figurze 2, mikrofon i R1 zamieniają się z prostym podłączaniem dźwiękowy port wyprowadzenia komórkowego telefonu. Objętości komórkowego telefonu należy być skorygowany odpowiednio dla optymalne wykonanie. Proste podłączanie do komórkowego telefonu wyłączy tło szum mikrofon.MAX2606 45mhz do 650mhz, Zjednoczył IF Vcos z Dyferencjałem Output. KODY PASKOWE REZYSTORÓW I DŁAWIKÓW

Home / Radio / DIY Crystal Oscillator Circuit crystal quartz oscillator circuit diagram

A very simple DIY crystal oscillator circuit which use a quartz for frequency stability and a good rf transistor. Use a 2-nd or 3-rd harmonic crystal, for example if you want 100MHz use a 50MHz or 33.3 MHz quartz or if you want use a 4-th harmonic crystal but the output rf voltage will be lower. The L coil has 5 turns 0.8mm Ø, 6mm Ø, 1 mm step, output at first turn from voltage plus. Use C4 for fine frequency adjustments. For a great frequency stability, this crystal oscillator circuit must use a good varicap diode (you can use BB139) and a good crystal too. Related Products: Oscillators and Crystals | Crystals | SMD Crystal Oscillator | TH Crystal Oscillator DIY crystal oscillator circuit components
R1 = 5.6K
R2 = 3.3K
R3 = 560Ω
R4 = 33Ω
R5 = 10K
R6 = 100K
C1 = C2 = 1nF
C3 = 10 … 33pF
C4 = 10 – 60pF trimmer
C5 = 22pF
C6 = 120pF
C7 = 100nF
D = BB139
T = BF199
Q = QUARTZ CRYSTAL
 2-nd, 3-rd or 4-th harmonic
Do-it-yourself Crystal
Oscillator Circuit Schematic


Mikrofon bezprzewodowy z przedwzmacniaczem. Dławik 390nH = 0,39uH = 3,9mH.

Ten prosty FM mikrofon bezprzewodowy nadajnika może transmitować mowę nad krótki zasięg. Można go  używać jako prosty cordless mikrofon. Obwód używa dwóch integrujących - obwodów od maxim. IC1 MAX4467, są amplifikatorem podnoszą sygnał mikrofonu poziom stosowny dla częstotliwości modulacji. IC2 są kontrolującym oscylatorem z zintegrowanym varactor (a.k.a varicap dioda). On jest taki mały że może znaleść zastosowanie w bezprzewodowym mikrofonie reporterskim. Bezprzewodowy mikrofon zapewnia oscylację częstotliwości około 100 MHz. Dla niego najlepszy sygnał, L1 musi być wysokości składnikiem. nominalna częstotliwość oscylacja ustawia induktor l1. Ten induktor ma wartość 390 nH L1 może składać się 4 zwoji o średnicy 10 mm. Cewkę rozciągnoć na długość około 1,5 cm.

Średnica drutu może być czymś między 26 SWG (0.5 mm) i 20 SWG (1 mm). Żaden rdzeń nie jest używany.
MAX4467 jest micro wzmacniaczem opatentowanym dla operacji niskiego napięcia i dostarczania 200 kHz szerokości pasma przy poborze prądu 24 μA. Pomiar z mikrofonem elektrytowym, jakaś forma uprzedzeń DC dla kapsułki mikrofonu jest niezbędna. MAX4467 ma umiejętność odrzucenia uprzedzeń do mikrofonu gdy urządzenie jest w trybie zamknięcia. To może oszczędzać kilka mikro amper z prądu zasilania, który może być znaczny w prymitywnych podaniach elektrycznych w szczególności dla podań na baterie jak bezprzewodowe mikrofony. MICBias szpilka dostarcza zmienioną wersję Vcc do składników uprzedzeń.


Wzmacniacz 7W 88-108 Mhz
 
POBIERZ PDF RD06HVF1 MOSFET (538 KB)


Wzmacniacz 15W 88-108 Mhz
POBIERZ PDF RD15HVF1 MOSFET (406 KB)


Wzmacniacz 70W 88-108 Mhz
POBIERZ PDF RD70HVF1 MOSFET (530 KB)

Ten nadajnik FM UKF będzie wyjście około 250mW mocy RF za pomocą tranzystora wyjściowego 2N3866 i może pracować między 75MHz i 146MHz . narzędzia on zmienny o wysokim wzmocnieniu dźwięku przedwzmacniacza , który może wykryć głosy 40 stóp od korzystania z mikrofonu elektretowego . Za pomocą skanera NBFM, przebiega 5KM zostały osiągnięte
 za pomocą anteny 48cm drutu . Cewki są 22SWG 7mm rdzeń powietrza. L1 i L2 powinna wynosić 6 obrotów na 75MHz do 85MHz,

   4 obroty na 85MHz do 100MHz i 3 włącza do 100 do 146MHz . Dla częstotliwości powyżej 100 MHz Crystal będzie większe niż 20 MHz tym samym podstawa emiter kondensator powinna być 47pF . L3 jest dławik 4.7uH . Jest to idealne miejsce , aby dostroić się tym obiegu za pomocą miernika fali detektora umieszczone kilka cali od nadajnika.


Transmitter 250 mW stabilizowany rezonatorem kwarcowym. Sprawdzony zasięg w terenie zabudowanym (pomieszczenie ekranowane) antena 10cm, zasięg bez szumów 25 metrów. Dławik 4700nh.
 PDF BC547 POBIERZ (191 KB) PDF CERAMIC TRIMMER POBIERZ (633 KB)


Transmitter 88-104 Mhz. Zasięg 20 - 50 metrów. Fm. PDF BC547 POBIERZ (191 KB) PDF 2N2222 POBIERZ (107 KB)

Wzmacniacz wysokiej czenstotliwości - 0,6W.

22SWG = Średnica w mm : mm 0.711 mm Średnica w calach : w 0.028 in Powierzchnia przekroju w milimetrach kwadratowych : 0.3973 mm2

SWG # Diameter
(mm)
Area
(mm2)
7/0 12.700 126.6769
6/0 11.786 109.0921
5/0 10.973 94.5638
4/0 10.160 81.0732
3/0 9.449 70.1202
2/0 8.839 61.3643
0 8.230 53.1921
1 7.620 45.6037
2 7.010 38.5989
3 6.401 32.1780
4 5.893 27.2730
5 5.385 22.7735
6 4.877 18.6793
7 4.470 15.6958
8 4.064 12.9717
9 3.658 10.5071
10 3.251 8.3019
11 2.946 6.8183
12 2.642 5.4805
SWG # Diameter
(mm)
Area
(mm2)
13 2.337 4.2888
14 2.032 3.2429
15 1.829 2.6268
16 1.626 2.0755
17 1.422 1.5890
18 1.219 1.1675
19 1.016 0.8107
20 0.914 0.6567
21 0.813 0.5189
22 0.711 0.3973
23 0.610 0.2919
24 0.559 0.2452
25 0.5080 0.2027
26 0.4572 0.1642
27 0.4166 0.1363
28 0.3759 0.1110
29 0.3454 0.0937
30 0.3150 0.0779
31 0.2946 0.0682
SWG # Diameter
(mm)
Area
(mm2)
32 0.2743 0.0591
33 0.2540 0.0507
34 0.2337 0.0429
35 0.2134 0.0358
36 0.1930 0.0293
37 0.1727 0.0234
38 0.1524 0.0182
39 0.1321 0.0137
40 0.1219 0.0117
41 0.1118 0.0098
42 0.1016 0.0081
43 0.0914 0.0066
44 0.0813 0.0052
45 0.0711 0.0040
46 0.0610 0.0029
47 0.0508 0.0020
48 0.0406 0.0013
49 0.0305 0.0007
50 0.0254 0.0005


Inteligentny przedwzmacniacz PDF AVT 2312 POBIERZ (1,07 MB)
Opisany dalej układ doskonale współ−pracuje z mikrofonem elektretowym, ale bez przeróbek może też współpracować z innymi źródłami sygnału. Może więc pełnić funkcję uniwersalnego niskoszumnego przedwzmacniacza mikrofonowego z auto−matyką. W tej roli znajdzie zastosowanie we wszelkich systemach nagłośnienia, w układach telekomunikacyjnych i radioko−munikacyjnych, telekonferencyjnych, w dy−skotekach, systemach rozgłaszania (np. dworce PKP i PKS), itp. Będzie też znako−mitą pomocą przy wszelkich nagraniach, pełniąc rolę skutecznego ogranicznika, nie dopuszczającego do przesterowania toru zapisu. Szczególne właściwości układu u−możliwiają wykorzystanie go jako gitarowe−go efektu wybrzmiewania (sustain) o bar−dzo dobrej jakości.

Specyfikacja Moc: Prosty nadajnik radiowy 400 mW. Zasilanie nadajnika: 12-14 V Częstotliwość pracy: 87,5-108 MHz stabilizowany. Pobór prądu: 100 mA. RF moc: 400 mW. Impedancja: 50-75 ohm. Modulacja: FM szerokopasmowa. Czytaj dalej...

L1 30nH (0,03uH) L2 60nH (0,06uH)
 L3 30nH (0,03uH)
 

POBIERZ PDF BFR96 (117 KB) POBIERZ PDF BB112 (74,7 KB)
POBIERZ PDF BB409 (59,5 KB) POBIERZ PDF BB105 (1,24 MB)

POBIERZ PDF BB204 (33,9 KB) PDF BB145 POBIERZ (140 KB)
PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)
PDF CERAMIC TRIMMER POBIERZ (633 KB)
PDF BB105B POBIERZ (178 KB)
PDF BFR91A POBIERZ (139 KB)

Vf výkon: 400 mW. Frekvence: 87,5-108 MHz. Modulace: FM širokopásmová.


Miniaturowy wzmacniacz stereo z układem TDA2822M PDF TDA2822M POBIERZ (74,4 KB)
Miniaturowy wzmacniacz stereo z układem TDA2822M

DUAL LOW VOLTAGE POWER
AMPLIFIER
DESCRIPTION
The UTC TDA2822M is a monolithic integrated audio
amplifier in a 8-Pin plastic dual in line package. It is designed
for portable cassette players and radios.
FEATURES
*Wide operating supply voltage:Vcc=1.8V- 12V.
*Low crossover distortion.
*Low quiescent circuit current.
*Bridge/stereo configuration.
 

Miniaturowy wzmacniacz mono z układem TDA2822M

Wzmacniacz charakteryzuje się minimalną ilością elementów zewnętrzych. Nie wymaga żadnego strojenia ani regulacji. Pracuje od razu po prawidłowym zmontowaniu. Może mieć zastosowanie jako dodatkowy wzmacniacz do walkmana, do samodzielnie konstruowanych odbiorników radiowych, pozytywek. Ze względu na niewielkie wymiary płytki może być również zastosowany w miejse trudno dostępnych układów w sprzęcie RTV. Niewielki pobór prądu umożliwia zasilanie układu z baterii.

Miniaturowy wzmacniacz mono z układem TDA2822M PDF J-245 POBIERZ (1,10 MB)


PDF TA2111N POBIERZ (597 KB)
Радиоприемници, базирани върху шаси от "Геолог"
Част IV: FM/AM приемник с ИС TA2111N


Интегралната схема на TOSHIBA TA2111N е изключително подходяща за изработване на радиоприемници със задоволително качество и малък брой елементи, което е моята цел в тази серия от конструктивни решения. Естествено има и други такива интегрални схеми като TA8164P, TA8132 и т.н. Трябва да подчертая, че със сигурност разработените радиоприемници са далеч с по-добри характеристики от оригиналния радиоприемник, дори само с факта, че добавяме съвременен УКВ обхват 87-108 MHz. Интегралната схема TA2111N позволява цялостно решение на радиоприемник за АМ и УКВ. В моите схеми стереодекодера е изключен, тъй като шасито на ГЕОЛОГ не позволява тази хубава възможност. Но тъй като аз публикувам оригиналите на печатните платки, естествено всеки може да си ги модифицира и да го добави.
Czytaj dalej...

long range fm transmitter
This is very stable, harmonic free, long range fm transmitter circuit which can be used for fm frequencies between 88 and 108 MHz. This can cover 5km range (long distance). It has a very stable oscillator because you use LM7809 stabilizer which is a 9V stabilized power supply for T1 transistor and for frequency adjustment that can be achieved by using the 10K linear potentiometer. The output power of this long range rf transmitter is around 1W but can be higher if you use transistors like KT920A, BLX65, BLY81, 2N3553, 2SC1970, 2SC1971…
Czytaj dalej...

Fm transmitters PDF 199 PHILIPS POBIERZ (49,1 KB) PDF BF199 POBIERZ (144 KB)
PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB) PDF CERAMIC TRIMMER POBIERZ (633 KB)


fm transmitter circuit schematic PDF BF982 POBIERZ (128 KB)
The most important part of this 88-108 transmitter is the Colpitts oscillator. C3,C4,C5,C6,CD1-CD2 ans L1 determine the transmission frequency. The RF Oscillator circuit has the BF982 MosFet transistor wich is the active part. The others 2 transistors separate the VCO from antenna.
FM transmitter circuit diagram The first stage BF199 amplifies the weak signal from the vco and functions in constant load. The second stage BFR90 amplifies the rf signal to load the antenna wich will radiate the radio frequency power. Antenna can be one wire, 70 cm long. L1 coil has 1mm thick copper wire, 3.5 turns, 5 mm diameter and 1mm space between turns.
You can use BF199 instead of BFR90 and MV104 instead of the 2 varicape diodes.
Czytaj dalej...
 

Pira CZ 5W PLL FM Transmitter

Easy to build high-quality PLL FM transmitter with typical output power of 5 W and no-tune design. The transmitter includes RDS/SCA input and Audio/MPX input with optional preemphasis. It can be used with or without stereo encoder. Tuning over the FM band is provided by two buttons that control dual-speed PLL. The transmitter can work also without the LCD display. Some experience with building devices of this kind are highly recommended.

Characteristics
Supply voltage 11-13.8 V (stabilised or from a battery)
Supply current up to 1.2 A
Standard frequency range 87.5-107.9 MHz
Audio/MPX input sensitivity 2 V pp (for 75 kHz freq. deviation)
RDS/SCA input sensitivity 0.2 V pp (for 7.5 kHz freq. deviation)
Board dimensions 109 x 54 mm
Czytaj dalej...


Transmitter 5W


PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB) PDF CERAMIC TRIMMER POBIERZ (633 KB)
Transmitter w.cz
87-107 MHz

Then you can connect antenna and audio signal. Adjust R1 until the audio sounds as loud as the other stations, With a good antenna (dipole placed outdoor and high) the transmitter has very good coverage range about 1500 meters, the maximal coverage range is up to 20 km.

Czytaj dalej...

Schemat generatora z separatorami.

 

Płytka drukowana GIF (6,21 KB) PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)


PDF CERAMIC TRIMMER POBIERZ (633 KB)
Schemat stopni mocy nadajnika fm.

 Transmitter FM. Wykaz elementów PNG (38,6 KB)
PDF CERAMIC TRIMMER POBIERZ (633 KB)


Transmitter stabilizowany rezonatorem
kwarcowym 49 MHz.
Wykaz elementów PNG (27,8 KB)
 


Piezoelektryczny rezonator kwarcowy.

 

Transmitter 88-108MHz

L1 - 3.5 turns / 5mm dia. variable coil
(65nH - 80nH).
L2 - Ferrite bead 1 turn or use 1uH inductor.


About TX200 - 200mW FM Transmitter Supply Voltage: 9V Power Consumption: 35mA
PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)

L1 - 3.5 turns / 5mm dia. variable coil (65nH - 80nH).
L2 - Ferrite bead 1 turn or use 1uH inductor.

Parts List:
R1 - 47K
R2 - 22K
R3 - 39K
R4 - 100
R5 - 27K

C1, C2, C4,
 C5, C9 - 1n
C3 - 4.7uF
C6 - 15pF

C7 - 6.8pF
C8 - 75pF
C10 - 100nF
C11 - 2pF

C12 - 10pF C13 - 100uF

Q1, Q2 - BF199

Czytaj dalej...

Odbiornik radiowy UKF na pasmo 66-110Mhz

Odbiornik przeznaczony jest do odbioru audycji
nadawanych w paśmie 88-108 Mhz. Zbudowany jest na
układzie TDA7020 (TDA7021). Układ ten zawiera w swojej
strukturze wszystkie tory odbiornika FM: wzmacniacz w.cz.,
heterodynę, mieszacz, wzmacniacz p.cz, demodulator i
układ wyciszania. Odbiornik ten cechuje brak elementów
indukcyjnych w torze p.cz., co osiągnięto dzięki
zmniejszeniu częstotliwości pośredniej do 76kHz.
Podstawowe parametry układu TDA7020:
- napięcie zasilania 1,8-V
- stosunek sygnału do szumu 60dB
- prąd zasilania 6mA
- czułość przy S/N -26dB
- zakres ARCz 160kHz

 L1 najwygodniej nawinąć na wiertle o średnicy 5 mm. Należy
nawinąć 5 zwojów drutu o grubości 0,7 mm. (20nH)

Cewkę L2 obwodu heterodyny nawinięto na korpusie z filtru 7 x 7.
Uzwojenie ma 4 zwoje drutu CuAg fi 0,8. (36nH)

TDA7020 MC1309P STEREO PDF 3296 POBIERZ (196 KB) POBIERZ PDF BB105 (1,24 MB)
 PDF J081 POBIERZ (291 KB) PDF 78L05ACZ POBIERZ (66,8 KB)
 PDF 78L05 POBIERZ (980 KB) PDF TDA7021 POBIERZ (145 KB)
  PDF TDA7021T POBIERZ (145 KB)


Odbiornik FM.


Odbiornik FM TDA7021T PDF TDA2021T (145KB) Dławik 1uHz = 1000nHz

Odbiornik FM 88-110Mhz PDF TDA7000 (224KB) PDF SCHEMAT (3,19MB)


Odbiornik FM 88-110Mhz PDF AVT495 (176 KB)

FM Receiver TDA7000 PDF TDA7000 (224KB) PDF TBA820M (95,4 KB) PDF BB204 (33,9 KB)


PCB 1 PCB2 PCB3 OPIS

FM радио на TDA7021 и УМЗЧ на TDA2003
Наводил порядок в деталях нашел TDA7021.. надумал применить её по назначению.

Исходя из документации характеристики примерно следующие:
Диапазон принимаемых частот: 80-110mHz (в зависимости от того как настроите)
Чувствительность: 5 uV
Применив для усиления звука микросхему TDA2003 получим полноценное радио!
Характеристики с УМЗЧ:
Максимальная мощность: 10W при нагрузке 2 Ом; 5W при нагрузке 4 Ом
Напряжение питания: 8-16v (Рекомендуемое 12v)

Хочу заметить также что TDA2003 нужно установить на радиатор, особенно если будете "качать" её в нагрузке с динамиком сопротивлением 2 Ома!

60-120MHz FM Receiver with AFC

March 20, 2015 / by circuit wiring / in RF Radio Circuits

We can say in simple words that AFC will lock the receiver to any valid RF signal. Below, we can see a basic block diagram of an receiver. The VCO is mixed with the RF signal which enter the mixer (yellow). The VCO can be a coil and a tunable capacitor. To bring out the sound from the FM signal, the product from the mixer is filtered and enter the demodulator (blue).

60 120MHz FM Receiver with AFC

Now you feel the different in tuning with or without AFC. You have to ve very steady on your hand without AFC and if you touch any component the frequency will change. When you are trying to find narrow band signals, this is specially annoying. Just let the tunable capacitor slide and my receiver locked to all kinds of signals when the AFC is connected. The receiver could even locked the police frequency which is narrow band FM signal (5kHz).


PDF ODBIORNIK UKF FM TDA7088 POBIERZ (1,30 MB)
Kieszonkowy odbiornik stereofoniczny UKF FM

Do budowy odbiornika wykorzystano
nowoczesne układy scalone firmy Philips.

Zasadnicza część odbiorcza wykorzystuje
układ TDA 7088T. Jest to układ w obudowie typu SO16 przewidzianej do montażu powierzchniowego. Zawiera w swoim wnętrzu: pełny tor odbiorczy FM mono z demodulatorem, obwód wyciszania, układ automatycznego przestrajania wspópracujący z zewnętrzną diodą pojemnoœciową, zabezpieczenie przed odwrotną polaryzacją zasilania. Minimalne napięcie zasilania wynosi 1,8 V co pozwala na zasilanie napięciem 3 V (dwa ogniwa R6).

Maksymalne napięcie zasilania nie powinno przekroczyć
5 V. Typowy pobór prądu wynosi 5,2 mA.
Zakres temperatur pracy -10÷+70° C
SCHEMAT TDA7088T GIF


PCB 1


PCB 2


TDA7088 TDA2822 POWER FM


PDF TDA7088 POBIERZ (252 KB)

 Радиоприемникът в оригиналното си изпълнение беше с автоматична настройка на станциите с един бутон и допълнителен бутон за начално установяване на честотата. При стационарна работа беше много неудобно търсенето на любимите радиостанции отначало при всяко изгасяне и запускане. След като премахнах резистор в автоматиката, управляваща с напрежение варикапа за настройка, чрез 10 оборотен потенциометър радиоприемникът вече се настройва ръчно. Напрежението за настройка варира от 1,2 до 3V, при което приемания УКВ обхват е от 87,6 до 108 MHz. След това премахнах ненужните електронни елементи като светодиод, транзистор за усилвател на слушалките и превключвател с две положения за гръмкостта. SCHEMAT CD9088 LM386 GIF


За бъдещи приложения бих използвал LM386 като нискочестотен усилвател, свързана по следната принципна електрическа схема:

Експерименталната платка "с квадратчета" на показания усилвател се "подхвърля" два-три дни, при което я свързвах към късовълновото радио, компютър, mp3 плеър и др. звукови източници. За SMD корпус с размери 4мм х 4мм х 1мм интегралната схема се справяше добре - изходящата мощност е достатъчна за озвучаване на стая, с поносимо качество.

 


Potencjometr cyfrowy 100 k ohm PDF X9C104 POBIERZ (231 KB) PDF XICOR POBIERZ (488 KB)

Xicor wyprodukował pierwsze potencjo−
metry EEPOT w roku 1987 w technologii
NMOS. Choć te pierwsze wyroby charaktery−
zowały się dużym poborem energii, znalazły
szereg zastosowań i przyjęły się na rynku.
W roku 1992 wprowadzono drugą generację
potencjometrów elektronicznych, wykona−
nych w technologii CMOS, co było niewątpli−
wym przełomem ze względu na zmniejszenie
poboru prądu. W roku 1995 pojawiły się ukła−
dy o niskim napięciu zasilania (3V). Dalszym
krokiem było pojawienie się układów trzeciej
generacji, charakteryzujących się mniejszymi
szumami i jeszcze mniejszym poborem mocy.
Potencjometry firmy Xicor oznaczane są przez producenta skrótem XDCP − Xicor Digitally Controlled Potentiometer. Od dawna docenianą zaletą układów firmy Xicor jest obecność nieulotnej pamięci EEPROM, dzięki której nastawy potencjometrów są zachowywane po wyłączeniu i włączeniu zasilania. Dlatego potencjometry te oznaczane są także EEPOT lub E2POT. Potencjometr cyfrowy jest w rzeczywistości zespołem wielu (np. 100) rezystorów i przełączników CMOS. Logiczne układy sterujące włączają odpowiednie klucze odpowiednio do zawartości licznika. W praktyce w strukturze zawarte jest od 16 do 256 przełączników, a rezystorów zawsze o jeden mniej. Jeśli wszystkie rezystory składowe są jednakowe, uzyskuje się potencjometr o charakterystyce liniowej.
X9C104


Potencjometr cyfrowy - audio PDF DS1669 POBIERZ (173 KB)
FEATURES
Replaces mechanical variable resistors
Electronic interface provided for digital as well as manual control
Wide differential input voltage range between 4.5 and 8V
Wiper position is maintained in the absence of power
Low-cost alternative to mechanical controls
Applications include volume, tone, contrast, brightness, and dimmer control
Available in 8-pin SOIC and 8-pin DIP packages
Standard resistance values for Dallastat:
DS1669-10 ~ 10 kΩ
DS1669-50 ~ 50 kΩ
DS1669-100 ~ 100 kΩ
Operating Temperature Range Industrial: -40°C to +85°C

Aircraft / Airplane Radio Receiver Component List:

R1, R3 - 47K 1/4W Resistor
R2 - 10K 1/4W Resistor
R4 - 4.7K 1/4W Resistor
R5 - 5K Linear Taper Pot
R6 - 2.2K 1/4W Resistor
C1, C2, C3, C6 - 0.001uF Ceramic Disc Capacitor
C4 - 2.2pF Ceramic Disc Capacitor
C5 - 1pF Ceramic Disc Capacitor
C7 - 15uF 15V Electrolytic Capacitor
C8 - 18pF Variable Capacitor
D1 - 1N82 Diode
Q1 - 2N918 NPN Transistor
L1 - See Notes
L2 - 1.8uH Inductor
ANT1 - Approx. 18 Inch Wire Antenna
MISC - PC Board, Wire, Knob For C8

Voltage Supply: 9-12V
Aircraft / Airplane Radio Receiver
Operating Frequency: 220MHz - 400MHz
Czytaj dalej...

High Frequency VCO Design and Schematics Czytaj dalej...
PDF SMV1232 POBIERZ (972 KB)
PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)

This simple transmitter allows you to broadcast on FM radio band 87.5 - 108 MHz. It consists of a simple oscillator with silicon planar RF PNP transistor. Directly to the oscillator an antenna is connected. Due to the large amplitude of RF voltage is sufficient antenna length of about 5-10 cm. I used insulated 7cm long copper wire 1mm diameter. I eliminated the tuning capacitor, which is usual for most bugs and miniature transmitters, because this greatly complicates the tuning. From my own experience I know that if you get closer to such capacitor, the operating frequency is changed. That's why I chose to use the voltage tuning using the Voltage Controlled Oscillator (VCO). Instead of tuning capacitor the varicap (capacitance diode) is used, which changes its capacity by changing the reverse DC voltage. We can tune the operating frequency by changing the DC voltage using the trimmer P1. Varicap also provides frequency modulation. Inductor L1 is airborne and has six turns of 0.5 mm diameter wire wound on 3 mm diameter. Inductor L1 with turns close together - larger inductance - lower frequency. L1 with outstretched turns - lower inductance - higher frequency. Czytaj dalej...
 


Single Transistor VCO FM Transmitter PDF BBMV2101 POBIERZ (69,7 KB)
PDF BBMV209 POBIERZ (63 KB) PDF BF970 POBIERZ (74,1 KB) PDF BF979 POBIERZ (71 KB)
PDF BC559 POBIERZ (89,4 KB) PDF 3296 POBIERZ (196 KB) PDF 3006 POBIERZ (182 KB)

This simple homemade television transmitter allows you to broadcast TV picture on the UHF band 470-855 MHz. The frequency is determined by the values ​​of components L1 and C1. The values ​​given in the schematic diagram set the transmitter to about 600-700 MHz, that is in the range of 37. - 50. channel of analogue TV bands. The television transmitter consists of a simple oscillator with high frequency NPN transistor. Suitable are for example BFR90, BFR91A, BFR92 or BFR93. I used BFR91A in the planar to50 case. Its transition frequency is 6GHz. Carrier frequency is amplitude-modulated by the input video signal. As the video source you can use a security TV camera or camera with video output. Antenna is about 5cm (2'') of wire and is connected directly to the oscillator. The transmitted signal can be tuned on any analog TV with UHF band. Operating frequency can affect by changing values ​​of L1 and C1. Fine tuning is possible by stretching or shrinking turns of L1. Czytaj dalej...


 At an input power of 0.1W the output will be 1W. Czytaj dalej...

1 Watt FM Transmitter Amplifier

Component values
R1 = 100Ω
R2 = 2.2KΩ at 12V and 4.7kΩ at 24V
R3 = 10KΩ
R4 = 100Ω
C1 = C5 = C6 = 10 60pF
C2 = C4 = 1nF
C3 = 10uF
D1 = 1N4148
L1 = 20 turns of 0.2mm EnCo* wire over R4
L2 = 7 turns of 0.8mm EnCo* wire with 6mm diameter on air
L3 = 4 turns of 0.8mm EnCo* wire with 7mm diameter on air
T1 = 2N4427, KT920A, KT934A, KT904, BLX65, 2SC1970, BLY87 (2N2219, output of 0.4W) at 12V
T1 = 2N3866, 2N3553, KT922A, BLY91, BLX92A at 24V
* EnCo = enamelled copper

15W Transmitter Power Amplifier
88-108MHz

The power amplifier boosts 88-108MHZ 1-2W FM transmitter's power to 15 W. It includes multi-level low pass filter and has a high conversion efficiency with strong Yi-wave suppression. With good antena expected transmission coverage is at least 15Km. It uses high power 175 MHZ 4A 25W 2SC1972 RF transistor that must to be mounted to heatsink for proper heat dissipation.
Czytaj dalej...

PDF CERAMIC TRIMMER POBIERZ (633 KB)

 
18W FM Transmitter
 
 Here's FM transmitter for commercial FM band that provides 18 watts of power. Since the electronic diagram is too large we decided to divide it into two parts. The first part is the actual FM transmitter while the second part is 18W RF amplifier. The circuit should be built on an epoxy printed circuit board with the upper face components reserved for interconnecting tracks and the bottom solder to the ground plane. If powered by 14V and 2.5A transmitter outputs 15W of power, whereas 18V and 3.5A will provide 18W.
Czytaj dalej...
 

BFR93A

NPN 6 GHz wideband transistor
L1 = L3 = 5uH choke.
L2 - 3 turns 0,4 mm copper wire;
winding pitch 1 mm; intemal diameter 3 mm.

 

PDF BFR93A POBIERZ (121 KB)

This is simple FM transmitter for FM broadcast band in 88-108 MHz. BC 549 is small signal transistor for wide applications, but usually for AF. You can build simple FM transmitter with one BC549 transistor and several other component parts. Simple FM transmitter with only one transistor is often called bug. This project is suitable for beginners in radio amateur, education, or hobbies. As an antenna you can connect 150cm of copper wire.

The input can be replaced with any sound source, like ipod, Mp4 player, laptop, or TV. Transistor circuit outputs 1-5 mW RF signal that can travel around 30 meters, due to limited power supply voltage, limited modulation, very loose coupling with the Antenna. The Antenna has to be connected either directly to the tank circuit or via a small capacitor. The Antenna now forms part of the tuning circuit. If you approach the antenna, the frequency of the oscillator may shift slightly. This effect is called Frequency Pulling. The frequency of operation shifts as the battery runs down. This effect is called Frequency Pushing. The internal capacitance of the transistor also changes with the temperature of the transistor. The tuning capacitor also changes values slightly with temperature. So one experiences a slow frequency drift till the transmitter reaches thermal equilibrium with its surroundings.

Simple FM Transmitter with BC549


PDF CERAMIC TRIMMER POBIERZ (633 KB)
This FM radio receiver circuit is very simple to build and is powered by just a single 1.5V battery cell. Receiver consists of a regenerative rf stage, TR1, followed by a two of three-stage audio amplifier, TR2 to TR4. In some areas 3 stages of audio amplification may not be necessary, in which case TR3 and its associated components can be omitted and the free end of capacitor C5 connected to the collector of TR2. The critical part of the fm radio receiver is the first stage, TR1/VC1, where the wirings must be kept as short as possible. Coil L1 is formed by winding 8 turns of 1mm (20 swg) enamelled copper wire on a 6 mm diameter former, which is then removed. After that L1 should be stretched carefully and evenly to a length of about 13mm.

The tunning capacitor VC1 is one of the two fm sections of a miniature fm transistor radio with built-in trimmers (VC2). The earthy end (moving vanes and spindle) is connected to the 22pF capacitor C1. The value of the rf choke L2 is not critical, anything from 1ľH to 10ľH being suitable. The output is suitable for ordinary earphones connected in series to provide an impedance of 64Ω. Tuning-in the fm radio receiver To operate the receiver, potentiometer VR1 must first be advanced slowly (towards the end of the track connected to battery positive) until, at about the half-way point, a sudden slight increase in background noise will be heard, indicating the onset of oscillation. It then should be backed off, very slowly, until oscillation just stops; it then should be possible to tune in some stations.  The correct frequency range of 87 MHz to 108 MHz can be obtained by adjusting VC2 at the high frequency (108 MHz) and slightly stretching or squeezing together the turns of coil L1 at the end (87 MHz). FM Radio Circuit Diagram fm radio receiver circuit diagram
Transistors List: TR1 = BF199 TR2 = TR3 = TR4 = BC547

Simple microphone preamplifier

Summary of circuit features
Brief description of operation: Simple microphone preamplifier Circuit protection: No special protection circuits used Circuit complexity: Very simple one transistor circuit Circuit performance: Amplification 35 dB, flat frequency response from 20 Hz to 20 kHz, quite poor distortion performance figures, a little bit noisy Availability of components: Uses common and easily available components
Design testing: I have built few microphone preamplifiers based on this circuit and theu have worked without problems.

Applications: Interface dynamic or electret microphone to a line level audio input in HIFI amplifier or computer soundcard. Power supply: 9V battery, takes less than 10 mA current Estimated component cost: Electronics components than $10 Safety considerations: No special electrical safety considerations. Circuit description This is a simple microphone preamplifier circuit which you can use between your microphone and stereo amplifier. This circuit amplifier microphone suitable for use with normal home stereo amplifier line/CD/aux/tape inputs. This microphone preamplifier can take both dynamic and electret microphone inputs (preamplifier provides power foe electret microphone elements). The idea of this circuit is to keep the design as simple as possible to be easy to build. That was my goal when I needed a simple external microphone preamplifier for my mixer. The performance of the circuit is nothing superior but can be used with many not so serious projects. The circuit is a simple one transistor amplifier with amplification of about 30-40 dB (depends on transitor, temperature and voltage).

 The dynamic mic input is just a simple one transistor amplifier circuit with nothing special in it. LED D1 is in the circuit to show that the circuit operates. The voltage drop caused by LED (around 1.8V for RED led) has been taten in account when designing the amplifier circuit built around Q1. Resistor R4 and capacitor C5 make a filter to filter out possible noise from battery or other power source which is used to feed this circuit. Capacitors C1, C2 and C3 are used to block the DC bias on Q1 base to flow out of microphone input to microphone (the polarity of all capactors is straigh line = + and curved line = -). 

Electret microphone input has a resistor R1 fo feeding current through electret microphone capsule when it is connected to the electret microphone input. Electret microphone needs some current (about 1 mA) flowing through it to operate, because there is a small amplifier circuit inside the microphone capsule. This circuit is suitable for all typical cheap electret capsules which available from any electronic component shop. Because electret microphones have higher signal level output, it is quite easy to overdrive the amplifier when you shout to electret microphone. The circuit is bet to build to a small metal box like in the picture above. Put the 9V battery inside the case too. Battery power and metal box keep external noise and interference sources away. I used standard 6.3 mm jack for dynamic microphone and 3.5 mm mono jack for electret micrphone both installed to from, panel of the metal box. The LED and power switches are also installed to front panel. Measured specifications from protype Frequency response: 20 Hz to 20 kHz +-1dB Noise level (A-weighted): -85 dBm  Amplification: 35 dB Because of the simplicity of the design the distortion performance is not very good.

  At signal levels typically used by electret microphones the distortion is about 2-3%. With dynamic microphones the distortion level is lower (not measured). Here is the frequency response as measured by LoudSpeaker LAB software DEMO version with Sound Blaster 16 PNP card: The bass frequency attenuation is caused by the microphone preamplifier circuit. The high end attenuation is caused by Sound Blaster 16 card. As seen in the measured performance, the microphone preamplifier is suitable for speaker measurements made using suitable measurement software and sound card. Using this preamplifier connected to line level input the problems caused by poor microphone preamplifier in many sound cards can be avoided. Component list R1 4.7 kohm R2 220 kohm R3 2.2 kohm R4 120 ohm C1..C4 10 uF 16V electrolytic C5 100 uF 16V electrolytic D1 Red LED Q1 BC547B SW1 on/off switch If you can't find all the components on the shop near you take a look at component replacement tips.

 If you happen to have hard time finding BC547 transistor, you can use 2N2222 transistor instead. The circuit has been reported to work well with it also (although there might be some slight performance changes though, I have not tested and mearured the circuit with 2N2222). Modification ideas If you plan to use this circuit with a soundcard electret microphone which has 3.5 mm stereo plug, then you have modify the circuit to make it work work this type of multimedia microphone. You don't have to make many changes: just replace the 3.5 mm mono jack with stereo jack. In the original circuit R1 goes to the tip of the microphone connector, but now you connect R1 to go to the ring of the connector. If you want an adjustable output signal level for the microphone preamplifier you can add this quit easily by connecting one 10 kohm logarithmic potentiometer to the circuit output in the following way:


This inexpensive FM radio receiver antenna booster uses the BF324 TO92 style pnp transistor in a grounded-base configuration. The circuit may be used as a signal booster with VHF receivers whose front end suffers from low sensitivity (such as many valved and army surplus types). The frequency range of the preamplifier is roughly from 75MHz to 150MHz.

The two inductors in the circuit are home made. L1 consists of 10turns of 24SWG enamelled copper wire; the internal diameter is 3mm, no core. Inductor L2 has 13 turns of the same wire, and an internal diameter of 5mm; no core is used either. A construction tip: close-wind the inductors using 3 and 5mm drill bits respectively as temporary formers.

The prototype of the preamplifier was successfully used with an 88-108 MHz FM broadcast receiver and a 2-metre VHF ham receiver. The preamplifier draws about 2.5mA from a 5-volt supply.

Wideband FM antenna booster circuit schematic
 

Wideband Active Antenna Circuit

A 30 to 50 cm whip antenna provides reception from 10 MHz to over 220 MHz. T1 BF981, a dual-gate MOSFET, provides low noise, high-input impedance and high gain. The circuit is powered via the coaxial cable used to connect the antenna to a receiver.

 

UHF Antenna Amplifier Circuit

This amplifier circuit is used to amplify TV signals in UHF range. It uses a low-noise transistor and gives 10 to 15 dB amplification in the frequency range from 400 MHz to 850 MHz. The transistor must be shielded from the input components and in constructing this circuit, the wirings must be as short as possible. For best results, the cable must be directly soldered to the PCB. The circuit should be installed near the antenna and housed in a water proofed case.

The power supply for this uhf tv antenna amplifier is fed through the cable by using a choke coil. To prevent the DC voltage from getting into the TV set, the coaxial cable must be coupled to the set through a small value capacitor.

To align the amplifier, just adjust P1 until the best reception is achieved. It means a collector current between 5 and 15 mA.
PCB 1 PCB 2


Nadajnik UKF FM z cyfrową syntezą częstotliwości. PDF NADAJNIK UKF POBIERZ (1,61 MB)

Kompresor dynamiki 1 D1,D2 - dowolny BYP. AAP152 (germanowa), 1N4148 (przełączająca). Kompresor dynamiki 2 Kompresor dynamiki 3 D1,D2 - dowolny BYP. AAP152 (germanowa), 1N4148 (przełączająca).

Mini Mixer - cztery kanały wejściowe (monofoniczny). Procesor dynamiki z tranzystorem polowym
 jako tłumikiem sygnału na wejściu układu.
Mikrofonowy kompresor dynamiki.

500mW PLL FM Transmitter 88-108MHz


This PLL transmitter is controlled and the frequency is very stable and can be programmed digitally. Transmitter will work 88-108 MHz and output power up to 500mW. With a small change can set the frequency of 50-150 MHz. The output power is often set to several watts with transistors. So therefore I decided to build a simple transmitter with great performances. The frequency of this transmitter can easily be changed by software and space / compress air coil. This transmitter is the oscillator colpitts. Oscillator is a VCO (voltage controlled oscillator) which is set by the PLL circuit and PIC micro controller. This oscillator is called the Colpitts oscillator and voltage controlled to achieve the FM (frequency modulation) and PLL control.
Czytaj dalej...

FM Synchro Receiver

With capacitive three-point oscillator FM Synchro Receiver
Small VHF receivers needn‘t employ complex FM demodulation circuitry nor be double superhets. Using a capacitive three-point oscillator in common-base mode as the synchro demodulator makes things a lot easier.

2N3904

This is a simple Colpitts crystal oscillator for 1 to 20 MHz, can be easily made from junk-box parts
(provided that a crystal is handy).

Crystal Sine Wave Oscillators

This oscillator uses two transistors and operates the crystal in the fundamental mode. C1 and C2 should be about 2 700 pF for 1 MHz, 680 pF for 5 MHz, and 330 pF for 10 MHz. 150 pF can be used for up to 20 MHz. The output is a near perfect sine wave. Try varying C1 and C2 for best waveform. About 2 to 6 Vpp is available.

Crystal oscillators can produce either sine wave or square wave outputs over a very wide
range of frequencies, usually from one or two MHz up to several hundred MHz. Crystals are
produced to resonate at many different specific frequencies for particular applications, but
the range of available frequencies is made much greater by various techniques such as
frequency division, where the frequency of a crystal oscillator is sequentially divided by 2
many times by digital dividers, to a much lower frequency. Because any slight errors are
also reduced by the same division process, the final low frequency is much more accurate.
Czytaj dalej...


An updated design for the low cost 2.4G signal source (comb generator)
* 2001 Update to the low cost S-Band signal source.
The updated circuit uses one of the latest third overtone crystals.
These offer greater reliability than the fifth overtone crystals commonly used in oscillator circuits at VHF.
 * September 2002. - PCB now screen printed and include plated through holes. Q1 changed to BFS17
* Feb 2005. - Crystal changed to 96.013MHz to provide signal within the Phase 3E S band transponder
 * Feb 2011. PCB changed to lead free. Solder mask added to prevent tarnishing. MSA0386 supplied as alternative to MAR3.
 * Feb 2011. New application: For use as a frequency marker with the FUNcube dongle 64 - 1700MHz Software defined radio.
The signal source generates signal every 96MHz from VHF to microwave.
Use it to test antennas or check the frequency of your VHF/UHF SDR.
Click on picture below right from Mark Hammond N8MH.
It's the full size version of Mark's screen using the AMSAT-UK signal source with his FUNcube dongle and WRplus V1.04 software.



Component Identification:

The input of the MAR3SM is identified by a 'dot' on the body of the device or by its lead which is cut at an angle. Some devices are marked AO3
Q1- Surface mount transistor has been changed to a BFS17 - marked as E1p
D1 - Surface mount diode is identified by the marking F2 or F2P



A low cost signal source for 2.4 GHz. David Bowman G0MRF ( from original article in Oscar News)

With Oscar 40 now safely in orbit and with S band becoming a primary downlink for several satellites, there’s a lot of home construction and conversion of microwave equipment underway.

Unfortunately, when it comes to aligning S band receivers, microwave signals from space are not easy to find and are not ideally suited for initially tuning that ‘thing of joy and beauty’ that you have worked so hard to construct.

This signal source is a harmonic, or comb generator, which produces a series of strong outputs across the electromagnetic spectrum from VHF to 10GHz. These signals can be used to align receivers and converters or check the radiation pattern of antennas.

The circuit below uses a crystal oscillating at 96.019MHz. Its output is amplified and the signal applied to a pair of PIN diodes which produce an excellent signal at the 25th harmonic in the S band satellite allocation.



X1 is a third overtone crystal. Unlike their fifth overtone cousins, they can be used reliably with very simple circuits. Q1 forms an oscillator, while coil L1 and capacitors C3 and C4 are the resonant circuit. C3 and C4 also form a capacitive divider which allows a small signal, with low impedance, to feed U1 a Mini Circuits MAR3. This amplifier has a gain of about 10dB from DC to over 1GHz. With 50 Ohm input and output impedances, MMIC’s have greatly simplified microwave construction. Other devices from the same manufacturer have useful gain at 10GHz and some experimental 24GHz IC’s are just becoming available.

The amplified output from U1 is AC coupled to D1, a pair of antiparallel PIN diodes The harmonics produced pass along short stripline to the edge of the PCB.

Construction.

The kit, available from Amsat-UK, has just 21 components and can be constructed in about 30 minutes. The PCB has tracks on both sides and now uses plated through holes to pass signals through the PCB.

When complete, the board can be mounted in a screened enclosure. I found it was possible to solder the board’s output stripline directly to the center conductor of an RF connector. In my prototype, I selected a chassis mounting BNC socket, but any other microwave connector would be suitable. To increase mechanical strength, I added solder tags to the BNC mounting bolts and soldered these to the ground plane on the component side of the PCB. My ‘antenna’ is simply a short length of wire mounted in a BNC plug. The body of the metal enclosure acts as a ground plane. The results have been quite pleasing. The circuit oscillates at 96.019 MHz and produces an S9+ signal just below the engineering beacon on the AO-40 S1 transponder. It was also possible to hear the 108th harmonic on a 10GHz receiver, although with this particular crystal, the harmonic falls near the terrestrial, not the space allocation.



Under no circumstances should you connect this source either directly to a receiver or to a high gain antenna. The combined power produced across the spectrum could damage your receiver or travel for several kilometers causing interference.

======== ======== ======== ========



Comments:

1) L1 is part of a tuned circuit. You will probably need to adjust the core in L1 for resonance. On my samples the core needed to be initially set level with the former and then turned ACW out of the former by 3 full turns.
Take care with the ferrite core, it is brittle and will crack if you use a metal screwdriver.

2) The transistor supplied with all kits after 9/2002 is the BFS17. The transistor is soldered on the track side of the PCB

3) Minicircuits appear to have removed the white dot marking the input to the MAR3SM. The input of the device can still be identified by its lead which is cut at an angle. Agilent devices are marked AO3

Test Results by Domenico I8CVS

Subj: 2.4 GHz Signal Source measurements
Date: 7/18/01 11:29:36 AM GMT Daylight Time
From: domenico.i8cvs
To: g0mrf@aol.com (G0MRF David Bowman)

Dear David,G0MRF

Finally I have made the complete measurements on your 2.4 GHz Signal Source.

First of all I have permanently
inserted a 10 dB attenuator in order do not burn out the very expensive
mixer on the HP 8555A

So the XTAL oscillator output is not -2 dBm but -2+10= 8 dBm = 6,3 mW

Here follows the accurate harmonic level measurement at the output of D1


MHz Level dBm(50 ohm)
Fundamental, XTAL 96,015 +8,0 = 6,3 mW
# 2 harmonic 192,030 -3,0
# 3 " 288,045 -2,0
# 4 " 384,060 -8,0
# 5 " 480,075 -13,0
# 6 " 576,090 -14,0
# 7 " 672,105 -18,0
# 8 " 768,120 -10,0
# 9 " 864,135 -12,0
# 10 " 960,150 -13,0
# 11 " 1056,165 -15,0
# 12 " 1152,180 -15,0
# 13 " 1248,195 -18,0
# 14 " 1344,210 -30,0
# 15 " 1440,225 -35,0
# 16 " 1536,240 -32,0
# 17 " 1632,255 -30,0
# 18 " 1728,270 -34,0
# 19 " 1824,285 -30,0
# 20 " 1920,300 -30,0
# 21 " 2016,315 -32,0
# 22 " 2112,330 -36,0
# 23 " 2208,345 -30,0
# 24 " 2304,360 -30,0 =0,001mW
# 25 " 2400,375 -34,0 =0,000398mW
# 26 " 2496,390 -30,0


NOTE:
Measurements are made with HP 141 - HP8555A spectrum analyser and 50 ohm
probe with 30 dB attenuation ON

The above figure are net not including the attenuation of 30 dB.

2400,375 MHz harmonic is very strong and I will inform you after
experimenting with an interdigital filter on the output in order to cut all
undesired harmonics from the air.

If you made measurements by yourself please let me know your figures.

In addition the Signal Source is very useful for spectrum analyser
calibration because the HP 8555A has analog frequency reading.
only.

No other signals or spurious are encountered between one harmonic
and the subsequent one.

The oscillator signal is very clean with -120 dBc of phase noise at 10 KHz
offset from the carrier.
 

 

Woda (tlenek wodoru; nazwa systematyczna IUPAC: oksydan) – związek chemiczny o wzorze H2O, występujący w warunkach standardowych w stanie ciekłym. W stanie gazowym wodę określa się mianem pary wodnej, a w stałym stanie skupienia – lodem. Słowo woda jako nazwa związku chemicznego może się odnosić do każdego stanu skupienia.

Woda jest bardzo dobrym rozpuszczalnikiem dla substancji polarnych. Większość występującej na Ziemi wody jest „słona” (około 97,38%), tzn. zawiera dużo rozpuszczonych soli, głównie chlorku sodu. W naturalnej wodzie rozpuszczone są gazy atmosferyczne, z których w największym stężeniu znajduje się dwutlenek węgla.

Woda naturalna w wielu przypadkach przed zastosowaniem musi zostać uzdatniona. Proces uzdatniania wody dotyczy zarówno wody pitnej, jak i przemysłowej.

STRONA NR - 1

NASTĘPNA STRONA >>